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Accelerating a Particle-in-Cell Simulation
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In this article, performance limitations of the particle advance in a particle-in-cell
(PIC) simulation are discussed. It is shown that the memory subsystem and cache-
thrashing severely limit the speed of such simulations. Methods to implement a PIC
simulation under such conditions are explored. An algorithm based on a counting sort
is developed which effectively eliminates PIC simulation cache thrashing. Sustained
performance gains of 40 to 70 percent are measured on commodity workstations
for a minimal 2d2v electrostatic PIC simulation. More complete simulations are
expected to have even better results as larger simulations are usually even more
memory subsystem limited. c© 2001 Academic Press
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1. INTRODUCTION

Particle-in-cell (PIC) simulation is a popular method for numerically modeling many body
systems. The method’s popularity derives from its conceptual simplicity, the relative ease
at which simulations may be implemented, and the fact that PIC simulations capture kinetic
effects such as wave-particle interactions sometimes neglected by fluid models. Often, PIC
simulations are implemented from first-principles (without the need for an approximate
equation of state). However, these simulations often are computationally expensive with
restrictive time step and mesh spacing limitations.

Detailed numerical analysis of PIC methods with an emphasis on plasma and beam
simulation and a history of the technique may be found in Birdsall and Langdon’s definitive
book [1]. Hockney and Eastwood [2] also provide an excellent reference to the technique
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and demonstrate the application of PIC methods to a wide variety of problems including
semiconductor physics and gravitational simulation.

In a PIC simulation, the motion of a macro-particle (representing many physical parti-
cles) is solved by numerical integration using fields interpolated from a mesh (“push”). The
sources for the fields are obtained by interpolating the macro-particles’ positions and ve-
locities onto the mesh (“accumulate”). Typically, the push and accumulate are the dominant
computational expense in both memory and time in such a simulation.

Modern workstations employ hierarchies to speed up memory accesses. At the bottom
of the hierarchy is main memory and at the top is the processor. Between the processor and
main memory are caches. The caches are generally labeled L1, L2,. . .with lower numbered
caches higher in the hierarchy. Caches respond to memory transactions faster than main
memory and store data recently used by the processor. If data requested by the processor is
found in a cache, it is a “cache-hit” and the memory transaction completes quickly. If the
data is not in a cache, it is a “cache-miss” and the memory transaction is much slower. Most
processors transparently manage the caches—automatically deciding what data should be
kept and anticipating future transactions (“prefetching”). In general, caches work poorly
for sequences of memory transactions which randomly access large (compared to the cache
size) amounts of memory. Such a sequence of transactions “thrashes” the cache.

In simulations which store the particles in a global array or similar data structure, adjacent
particles in the array at any given time step are usually located at random positions with
respect to the mesh. Even if initially sorted by mesh location, the sorting eventually decays
as simulation time advances because of particle drift, loss, and creation. As a result, the
memory reads and writes of field quantities in the particle push and accumulate thrash the
memory caches heavily—hindering simulation performance.

In this article, a counting sort is hybridized with a particle push and accumulate to reduce
this thrashing. A counting sort is an algorithm for sorting a lengthN list of values where
only M different values are possible. The algorithm is order-N in time and order-M in
auxillary storage. Counting sorts are discussed in many standard computer-science texts;
see for example Cormenet al. [3] (II.9.2). A counting sort may be implemented either in-
place or out-of-place. The out-of-place sort creates a sorted copy of the input. The in-place
sort works directly on the input (requiring less memory than an out-of-place routine).

In the hybrid algorithm developed here, the particles are sorted by mesh location simul-
taneously with the push and accumulate. The implementation requires a minimal number
of extra computations as the push and accumulate already generate most of the informa-
tion necessary to do a counting sort. Variants of the hybrid algorithm are explored and
speed-memory tradeoff are discussed.

Counting sorts to accelerate a PIC simulation have been employed before. In Decyket al.
[4], a out-of-place counting sort is done on one particle coordinate every couple of time
steps. Counting sorts are used more aggresively in this work by fully integrating the sort
with particle operations, sorting on every particle position coordinate and by performing
the sort every time step.

On commodity workstations in terms of the number of particles processed per second,
typical performance increase for large simulations were in the range of 40 to 70 percent
depending on problem size, processor, and memory architecture. These performance in-
creases are seen even though the benchmarks used are heavily biased against the hybrid
routine. Emphasis is placed in this article on Pentium III-based workstations and clones as
these are widely used low-cost systems.
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In addition to improved performance, having a sorted particle array makes implementing
intra-cell collision algorithms much easier. An example of such an algorithm for Coloumb
collisions in PIC simulations is given by Nanbu and Yonemura [5].

While this article focuses on efficient implementation of a PIC simulation, modeling
techniques for reducing the computational expense of such simulations may be found in
Kawamuraet al. [6].

A note on terminology: A particle advance refers to both pushing and accumulating the
particle and a “MPAS” refers to millions of particle advances per second. A “flop” here is a
single floating point operation. “MFLOPS” refers to millions of floating point operations per
second. Similarly, a “mop” refers to a double precision memory operation (load or store) and
“MMOPS” refers to millions of double precision memory operations per second. MMOPS
is a measurement of “memory bandwidth”—the rate at which large blocks of data can be
transferred. Memory subsystem performance is also characterized by “latency”—the time
between a memory request and completion of that request. Modern processors generally
try to hide latency by “pipelining” memory transactions. When pipelining, memory is
requested well before it is needed so that the processor can do useful work while the
memory transaction completes. For pipelining to work, the processor and the compiler
must be able to efficiently “schedule” transactions so that processor is able to work while
waiting for memory.

2. SIMULATION ALGORITHMS

The code used for the benchmarking in this article is a minimal 2d2v (two spatial dimen-
sions, two velocity dimensions) electrostatic PIC simulation. A regular Cartesian mesh with
periodic boundary conditions is employed. The diagnostic set is minimal; only the particle
positions, velocities, and mesh density are computed. The particle push is done with an
explicit leap-frog method using fields bilinearly interpolated from the mesh. The particle
accumulate is done using bilinear weighting.

The particle advance and accumulate are the same algorithms used by the code PDP2,
(see Vahediet al. [7] and Vahedi and DiPeso [8] for a description of the code; see Bird-
sall and Langdon [1] for an analysis of this type of particle advance). Unlike PDP2, all
operations are done in double precision as is appropriate for larger simulations. In a large
simulation at single precision, the field interpolation may be unacceptably coarse as many
significant bits of the particle’s position are needed to indentify the mesh location and sim-
ilar noticeable errors in the accumulation may occur as a result of this excessive truncation
error.

Brief ANSI-C source code giving an optimized unsorted particle advance, an optimized
sorted particle advance, and an in-place counting sort may be found in the appendix. ANSI-C
was chosen over FORTRAN because ANSI-C is more widely used and better supported on
commodity workstations which are the emphasis of this article. In fact, many FORTRAN
compilers on commodity workstations convert source code to C and compile the result
with a C compiler. While FORTRAN is a staple in the supercomputing community and re-
cent incarnations support object oriented programming, the object-oriented language C++
(ANSI-C is a subset of C++) has been a particularly popular language for PIC simula-
tion as object-oriented coding techniques map well onto simulations which have to han-
dle numerous types of boundary conditions; C and C++ based PIC codes include PDP1
(Verboncoeuret al. [9], PDP2 (Vahediet al. [7] and Vahedi and DiPeso [8]), OOPIC
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(Verboncoeuret al.[10]), POOMA (Cummings and Humphrey [11]) and ICEPIC (Blahovec
et al. [12]).

3. SIMULATION IMPLEMENTATION

Before evaluating the hybrid counting sort algorithm, it is important to understand the
limitations the processor and memory subsystem place on PIC simulation performance.
The processor and memory capabilities also have a strong influence on how a PIC sim-
ulation should be implemented. As is shown below, the performance of the minimal PIC
simulation described previously is almost entirely dictated by the memory subsystem on
typical commodity hardware. More complete simulations (with additional diagnostics for
example) are expected to be as reliant if not more so on the memory subsystem.

For the benchmark simulation, for every particle during a time step, the following memory
operations are performed:

• Load the particle position and velocity (4 loads)
• Load the electric field for interpolation (8 loads)
• Store the updated particle position and velocity (4 stores)
• Load the particle density for weighting (4 loads)
• Store the updated density (4 stores)

The following floating pointing operations are performed per particle:

• Compute the particle mesh location and offset (6 flop)
• Compute the interpolated electric field (18 flop)
• Advance the position and velocity (6 flop)
• Handle periodic boundary conditions (4 flop)
• Compute the particle mesh location and offset (6 flop)
• Compute the density weighting (9 flop)

The flop counts are estimates that include operations such as converting a floating point
number to an integer and back (used to find the mesh location and offset).2

The particle data is generally much larger than the size of the processor caches and usually
particles are accessed sequentially only once per time step during the particle advance (twice
if accumulating in a separate loop). Thus, the particle advance is limited by the bandwidth
of the main memory when accessing large amounts of sequential data. Through pipelining,
the main memory latency is not a significant limiting factor.

Table I shows the attainable double precision floating point unit and memory subsys-
tem performance on a Pentium III processor. Here “attainable” indicates that such per-
formance can be achieved in portable code without relying on special architectural fea-
tures. Thus, these measurements differ somewhat from the theoretical figures sometimes
given in product specifications. Most algorithms can only reach a fraction of the attain-
able; for reference, the performance of the basic linear algebra subroutine (BLAS) ‘dgemm’
is also given. ‘dgemm’ (double precision real full matrix-matrix multiply) is an effective

2 Many compilers generate notoriously poor machine language for converting a floating point number to an
integer. For the mimimal PIC simulation here, additional performance gains (some-times double) are obtained
through the use of inline assembly for this operation alone. The benchmark results invoke such a compiler
modification.
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TABLE I

Attainable Performance on a Typical Workstation:

Larger Numbers Are Better

Multiply Add Total
(106 ops/s) (106 ops/s) (106 ops/s)

FPU performance
3 cycle pipelined multiply add 396 396 798
‘dgemm’ 283 283 566

Load Store Total
(106 ops/s) (106 ops/s) (106 ops/s)

L1 cache performance
Load 651 651
Store 664 664
Copy 258 258 515
Modify-in-place 482 482 963

L2 cache performance
Load 427 427
Store 265 265
Copy 157 157 314
Modify-in-place 264 264 527

Main memory performance
Load 97.3 97.3
Store 29.6 29.6
Copy 29.7 29.7 59.4
Modify-in-place 31.1 31.1 62.1

Note. The above data was measured on a dual-processor 800/133 MHz Pentium III with
a dual channel 800 MHz ECC RDRAM memory subsystem. All operations are done with
double precision numbers. The benchmark of simple unrolled loops was compiled using
the GNU compiler ‘gcc’ version 2.96 (compiler flags: ‘-Wall -pedantic -ansi -03

-fomit-frame-pointer -funroll-all-loops’) under the operating system Linux ver-
sion 2.2.16. Only one processor was used for the benchmarks and the benchmarks make no
use of nonportable platform specific features. The dominant limiting factor for a particle
advance (stores to main memory) is highlighted.

measure of the maximum sustained MFLOPS performance that a useful portable algo-
rithm can achieve on a given platform. The ‘dgemm’ measurement in the table is ob-
tained from the paltform self-tuning library ATLAS developed by Whaley and Dongarra
[13].

For data which must be loaded from main memory, modified and stored (as is the case
for the particle array), Table I indicates an implementation should perform roughly 9.1
floating operations per main memory operation (∼566 MFLOPS sustained/62.1 MMOPS
sustained; these figures may be found in Table I) to achieve similar performance to the
reference ‘dgemm.’ The PIC algorithm above performs between two and six floating point
operations per main memory operation, depending on how the advance is implemented (two
corresponds to the worst case of a two-pass advance with cache misses for the fields; six
corresponds to the best case of a one-pass advance with cache hits for the fields). Thus, the
particle advance is heavily memory bandwidth limited.
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Accordingly, the benchmark simulation is implemented to simultaneously keep the flop
count and memory traffic minimal. Whenever tradeoffs between memory traffic and floating
point operations occur, the benchmark simulation is implemented to reduce memory traffic.
For example, the particle mesh location and offset calculation is done twice but could be
done only once if the particle mesh location is saved between time steps. However, this
increases memory traffic by two integers loads and two integers stores per particle per
time step. Assuming 32-bit integers, this is equivalent to a savings of 6 flop at a cost of
2 mop. This results in a slower more memory subsystem dependent performance regardless
whether or not the field accesses are cache hits or the particles are processed in one pass
or two passes. A second example is the precomputation of interpolation coefficients for
each cell to speed the push. Such an array saves many flops during the velocity update but
doubles the total amount of field information that must be loaded from main memory during
the push—eliminating performance gains.

The necessity of keeping memory traffic minimzed indicates that instead of using a
structure of arrays for the particle data appropriate for vectorized platforms (i.e., the particle
coordinates and velocities are kept in separate arrays), an array of structures layout for the
particle data results in higher performance on typical workstations (i.e., the particle data
for coordinates and velocities are stored in one array in which the data for a specific
particle is contiguous in memory). Also, the the array of structures should be accessed
only once per time step if feasible to reduce loads to main memory. Accordingly, the
benchmark simulation packs the particles into a single array with all the data for a given
particle in adjacent memory locations; the push and accumulate are done in a single pass
also.

4. REASONABLE EXPECTATIONS

If the particles are located randomly with respect to the mesh, all the field accesses
are likely to be cache misses in a large simulation. (A large simulation here is a simula-
tion in which the electric field and density information are much larger than the processor
caches.) The cache thrashing problem is exacerbated as the mesh size increases. In a large
simulation, the maximum performance on the benchmark platform described in Table I is
expected to be approximately 2.0 MPAS. This figure was calculated assuming 16 loads
(particle, electric fields, and density) from main memory at 100 MMOPS, 8 stores (parti-
cle and density) to main memory at 30 MMOPS, 49 flops at 800 MFLOPS per particle.
Explicity,

2.0 MPAS≈
(

16 loads

100 MMOPS
+ 8 stores

30 MMOPS
+ 49 flop

800 MFLOPS

)−1

. (1)

Actual performance in a large simulation is likely to be somewhat lower as the electric
field and density accesses may also involve high memory latencies. However, this latency
is somewhat mitigated if the compiler properly schedules instructions.

If the particles are sorted by mesh location, then the field and density accesses are likely
to be cache hits as previously pushed particles are likely to have prefetched the needed
field and density information. In such a simulation, the performance of the benchmark
platform is expected to be 3.6 MPAS. This was found using the same method as the previous
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calculation under the assumption that the electric field and density memory accesses hit the
L2 cache.

Thus, for the benchmark platform, sorting is expected to result in an approximate
80 percent performance increase if it is done at negligible cost for large simulations. How-
ever, common sorting techniques are very slow at sorting the particles. This is because the
sorting routine passes through the particle array multiple times. For example, a “quicksort”
(an in-place sort) passes through the particles on average log2 N times, whereN is the
number of particles. Thus, for the 2d2v particle arrays here, quick sorting requires roughly
8N log2 N floating point memory loads and stores. Even for modest particle arrays, the
memory bandwidth required for a quicksort is far greater than the bandwidth required to
push the particles.

5. HYBRID COUNTING SORT

A counting sort is well matched to PIC simulation as it is an order-N operation which
may be smoothly integrated into the particle push and accumulate. Pseudocode for an
out-of-place counting sort follows:

ALGORITHM 1 (PARTICLE COUNTING SORT).

Inputs
I is the particle array to sort containing N particles
M is the number of mesh cells

Outputs
O is the sorted particle array
P is a particle allocation such that OPi−1+1 to OPi

are all the particles in cell i
begin

allocateN particles forO
allocate and set to zeroM integers forP
for n := 1 to N do Step 1: Count the number of particles in each cell

i := compute the cell for particleIn

Pi := Pi + 1
end for
k := 0 Step 2: Convert P into an allocation
for i := 1 to M do

j := Pi

Pi := k
k := k+ j

end for
for n := 1 to N do Step 3: Sort I into O

i := compute the cell for particleIn

j := Pi

Pi := Pi + 1
Oj := In

end for
return O, P

end
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The above sorts the particles while only passing through the input particle array twice
(for a 2d2v particle array, approximately 6∼ 8N loads and 4N stores are performed). This
algorithm takes advantage of the fact there are only a finite number of mesh locations.
To explain the algorithm: The first loop counts the number of particles in each mesh cell.
The second loop converts this count into an allocation which determines how the output
particle array should be organized. After this loop is finished, ‘pa’ indicates where in the
output array the next unsorted input particle should go. In the third loop, the input array
is copied to the output array according to the allocation in ‘pa’ (and the allocation is
accordingly updated). At the end of the routine, ‘out’ contains a sorted particle array and
‘pa’ gives the indices where particles in a particular cell may be found in the output particle
array.

This algorithm is well tailored to PIC simulation as the first loop is exactly analogous
to the particle accumulate. In fact, in the unlikely case that a nearest grid point (NGP)
weighting scheme is being used, the first loop of the counting sort is identical to the charge
accumulation. Likewise, both the third loop and the particle push need to compute the
input cell location. The second loop operates only on the ‘pa’ array and thus is a negligible
expense.

A two-pass particle advance may be trivially modified to perform an out-of-place counting
sort simultaneously by accumulating in the first loop of the counting sort and pushing in the
third loop of the counting sort. Even though the counting sort does an extra integer load and
store in the accumulate, this memory access is likely to be a cache hit as the particle array
stays sorted while the simulation is running. Thus, the benefits of a sorted particle array
are obtained with negligible cost. This gives the simplest version of the hybrid counting
sort.

The hybrid routine just described has four minor drawbacks. First, the sorting is not done
in-place—increasing memory requirements for the simulation. For aNs species simulation
at leastNs + 1 particle arrays are necessary to allow the algorithm operate. Counting sorts
may also be done in-place with a substantially more complicated algorithm (source code
for an in-place sort is given in the appendix). While a particle push and accumulate may be
hybridized with such an in-place algorithm, the resulting code is no faster than the unsorted
code as the in-place algorithm effectively accesses the particle array randomly during the
sort—destroying the electric field and density memory access locality necessary for the
sorting to give a performance boost.3

The second drawback is that the simple hybrid routine executes in two passes. As dis-
cussed previously, it is preferable to implement the particle advance in a single pass to
reduce memory traffic. The hybrid counting sort can easily be generalized to a single pass
routine which performs the count for the next time step while sorting the current time step.
This modification is used in the code employed for the benchmarks of the following section.
The source code for this variant is given in the appendix.

Third, the output particle array is sorted appropriately for the previous time step. If the
sort is being done only for performance reasons, this is not an issue as most of the particles

3 An in-place counting sort algorithm is still useful if the extra memory requirements of the out-of-place algorithm
are too high. The in-place algorithm is still an orderN algorithm in time and thus the sorting may be done at a
speed comparable to a particle advance. If the in-place algorithm is applied periodically, the performance gain of
a sorted particle array persists for several time steps as particles only move a little bit every time step. Periodic
sorting to accelerate a PIC simulation was applied in Decyket al. [4].
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usually move much less than one cell every time step (i.e.,v1t/1x ∼< 1). If the sort is
being done in order to apply other algorithms needing an exactly sorted particle array, the
hybrid counting sort above may be rearranged to count in the particle push and sort in the
particle accumulate. This modification however is slower than the two-pass hybrid sort,
and the one-pass variant as the push and accumulate must execute separately (the field
equations are usually solved after the accumulate and before the next push). Furthermore,
in this rearranged sort, both the push and accumulate read and write the particle arrays—
increasing memory traffic. However, this variant can be faster than sorting the particles in
an independent routine.

Lastly, the cell count must be kept accurate between the count and the sort. In particular
in PIC-MCC simulations (Particle-In-Cell with Monte-Carlo Collisions) when a particle is
created or destroyed through various reactions, the cell count needs to kept current in the
MCC algorithm if it is performed after the count but before the sort. Similarly, handling
particle boundary conditions where particles are created or absorbed is made slightly more
complicated.

6. RESULTS

All the benchmarks use a simulation where the particles have a uniform density and a
Maxwellian velocity distribution. The simulation parameters are consistent with the explicit
leap-frog time step and finite-mesh instability mesh space conditions (ωp1t ∼ 0.2< 2 and
1x/λd ∼ 1, respectively) necessary for simulation stability and accuracy. (ωp, λd are the
plasma frequency and Debye length respectively;1t and1x are the simulation time step and
mesh spacing.) The ratio of simulation particles to physical particles varies as the simulation
size is changed. The mesh is doubly periodic and square. As the push and accumulate are
the focus of the article, the solution of the filed equations is omitted and the electric field is
set to zero.

It should be noted that in simulations of beams or other applications, the memory access
pattern is likely to be very different from a thermal plasma. The benchmarks here are most
immediately applicable to PIC discharge modeling.

Figure 1 shows the loss of simulation performance as a sorted particle array becomes
unsorted as a result of particle motion. Even over a short interval of 128 time steps, a
roughly 15 percent performance loss is seen. Over longer intervals, the performance loss
approaches 50 percent. This gives strong motivation for pursuing efficient sorting tech-
niques.

Figure 2 shows the performance of the unsorted advance routine on the test platform
described in Table I (Pentium III 800/133 with a dual channel PC800 RDRAM memory
subsystem). The measured performance shows distinct plateaus. The highest plateau corre-
sponds to simulations that fit entirely inside the L1 cache. The middle plateau corresponds
to simulations whose electric field and particle densities fit entirely inside the L2 cache.
However, most simulations are far larger than either of these sizes. For the larger simula-
tions, the performance is seen dropping off as the mesh size is increased. This drop off is
relatively independent of number of particles as expected (typically particle arrays do not
fit into any cache level even for modest simulation sizes).

Figure 3 shows the performance of the sorted advance routine on the test platform. The
performance shows similar plateaus. However, the L2 cache plateau never rolls off. This
indicates that the sorted algorithm effectively performs as though the fields fit within the L2



FIG. 1. Degradation of a sorted particle array: As particles drift, a sorted particle array slowly becomes
disorganized. Thus, successive time steps take longer to compute because of increased cache thrashing. The
temperature and density of particles used for this benchmark corresponds to a plasma withωp1t = 0.2 and
1x/λd = 1. The number of particles is 16,777,216. The mesh size is 256 by 256.

FIG. 2. Unsorted routine performance (RDRAM memory subsystem): This figure shows the performance of
the unsorted advance routine on the test platform described in Table I (a Pentium III 800/133 with a dual channel
PC800 RDRAM memory subsystem). The measured performance shows distinct plateaus corresponding to the
performance of the cache supplying the field information for the particle push. For simulations which do not fit
into cache, the performance is seen dropping off as the mesh size is increased.

402
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FIG. 3. Sorted routine performance (RDRAM memory subsystem): This figure shows the performance of the
sorted advance routine on the test platform. The performance shows similar plateaus. However, the L2 cache plateau
never rolls off—indicating the sorted algorithm effective performs as though the fields fit within the L2 cache.

cache. The sorted algorithm gives consistent high performance regardless of total simulation
size (even up to simulations which take all free memory).

Figure 4 shows the performance boost of the sorted routine. For simulations which fit
entirely within cache, the sorted routine is marginally slower than the unsorted routine. This
is unsurprising as the sorted routine has to do slightly more calculation than the unsorted
routine. Similarly, the crossover for a simulation that fits within the L1 and an L2 cache
simulation occurs much sooner in a sorted simulation because of the extra memory needed
to store the particle array allocation. This accounts for the L1-L2 crossover performance
dip seen. For large simulations, performance increases of approximately 70 percent are
observed. This boost is consistent with the expected performance boost calculated previ-
ously. Likewise the benchmarks agrees nicely with the calculated expected performance of
3.6 MPAs.

Figures 5–7 show a similar set of benchmarks on a platform utilizing a different mem-
ory subsystem. These results are included to show the sorting performance when using
an SDRAM memory workstation (SDRAM is the most common memory in commodity
hardware). Also, these results cover even larger simulations as the SDRAM test platform
had substantially more main memory than the RDRAM platform. The SDRAM platform is
a Pentium III 600/100 with a PC100 SDRAM memory subsystem. The results show similar
characteristics to the RDRAM system but the sorted algorithm receives heavier penalties
in small simulations (owing to the slower processor) and the performance gains in large
simulations are not as pronounced but still a respectable 40 percent.
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FIG. 4. Performance boost (RDRAM memory subsystem): This figure shows the performance boost of the
sorted routine. For simulations which fit entirely within either cache, the sorted routine is marginally slower than
the unsorted routine. For large simulations, performance increases of approximately 70 percent are observed. The
L1–L2 crossover is explained in the text.

FIG. 5. Unsorted routine performance (SDRAM memory subsystem): This figure shows the unsorted bench-
marks analogous to Fig. 2 on the SDRAM test platform.
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FIG. 6. Sorted routine performance (SDRAM memory subsystem): This figure shows the sorted benchmarks
analogous to Fig. 3 on the SDRAM test platform.

FIG. 7. Performance boost (SDRAM memory subsystem): This figure shows the performance boost bench-
marks analogous to Fig. 4 on the SDRAM test platform. The large simulation gains are not as pronounced but still
quite respectable. The smaller simulation cases show a significant performance loss but that is a consequence of
the slower processor used on the SDRAM test platform.
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7. SUMMARY

Analysis of system performance on commodity hardware indicates the memory subsys-
tem of a workstation is the dominant factor limiting factor for speed in PIC simulations.
Accordingly, in this article, an algorithm for accelerating the particle advance in PIC sim-
ulations was developed by optimizing memory accesses. The algorithm effectively the
eliminates cache thrashing that occurs when interpolating from the mesh to the particles
and when accumulating from the particles to the mesh. The algorithm combines a count-
ing sort with a particle advance to sort the particles by mesh location simultaneously with
the particle push and accumulate. A sorted particle array accesses the electric fields and
densities in a nearly sequential manner—eliminating the cache thrashing.

Performance gains in large simulations of thermal plasmas on meshs containing over
10,000 cells (or roughly 100 cells along an edge) measured between 40 and 70 percent
depending on processor and memory subsystem. The benchmarks compared two highly
optimized particle advances for a minimal 2d2v PIC simulation (one unsorted and one
sorted). Methods to implement the advance to achieve optimal performance on commodity
workstations were discussed and realistic performance expectations were calculated from
simple FPU measurements. Simulations of beams likely have very different memory access
characteristics and may show different performance results.

It should be noted that the performance gains reported here are likely lower than the
gains that might be obtained in a more complete simulation of a thermal plasma. This is
because the benchmarks done here are heavily biased toward the unsorted case. For example,
usually many diagnostics are taken during the accumulate beyond the density diagnostic
computed in the benchmarks. This excerbates the cache thrashing of the unsorted advance
over the benchmarks used here. A sorted routine however would not exhibit any extra cache
thrashing. Likewise, the field solve routine (not included in the benchmarks here) is likely
to flush the cache between calls to the particle advance. Thus, the unsorted small mesh
benchmark cases overstate the actual performance that might be seen in a real simulation.
Also, as the electric field and density mops occur almost entirely out of the L2 cache
in the sorted algorithm, the sorted algorithm scales better to shared memory symmetric
multiprocessing systems as memory traffic to shared main memory is greatly reduced.

The principle drawback of the new algorithm is that the push and accumulate cannot be
done in place. However, code for an in-place counting sort is presented in the appendix. By
judiciously using the in-place sort periodically, the benefits of a reduction in cache thrashing
can still be achieved without having to significantly modify already existing PIC simulations.

It should also be noted that the benchmarks done here were done in double precision.
As the particle advance is limited by the memory subsystem, it is strongly suggested for
performance reasons to use single precision whenever sufficiently accurate. However, as
discussed previously, in large simulations single precision may not be numerically suitable.

APPENDIX: SELECT BENCHMARK SOURCE CODE

Here, the ANSI-C routines used for the benchmarks in this article are presented. The
routine ‘advance’ pushes and accumulates a particle array without sorting. The routine
‘advance sort’ performs the same mathematical operations as ‘advance’ but also sorts
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the particles by mesh location. The routine ‘sort in place’ performs an in-place counting
sort by mesh location on a particle array.

The push and accumulate routines are implementations of numerical algorithms similar
to those used in the University of California—Berkeley Plasma Theory and Simulation
Group code PDP2 described in Vahediet al. [7] and Vahedi and DiPeso [8]. However,
both the unsorted and sorted routines have been heavily optimized for minimal flop count
and memory traffic. As such, these routine use different data structures from their PDP2
counterparts and execute in one pass instead of two.

For reference, the particle advance routines apply to an unmagnetized 2d2v nonrelativistic
periodic electrostatic simulation. The particles are advanced using a second-order accurate
in time leap-frog algorithm. Thus, the particle position and velocity are known at times
separated by half a time step. The particle positions and velocities are normalized to the
mesh spacing and time step. Appropriate for an electrostatic simulation (which only needs
the charge density to compute the fields), the accumulate routine only accumulates the
normalized particle density.

The push and accumulate algorithms use bilinear interpolation and weighting respec-
tively. Bilinear techniques may be implemented efficiently and produce acceptable simu-
lation noise levels. Lower order methods (nearest grid point) are too noisy and high-order
methods are often difficult to implement, particularly near boundaries. However, the sorted
routines accumulate the nearest grid point weighting as part of the hybridized sorting algo-
rithm.

These routines were compiled using GNU ‘gcc’ version 2.96 under the operating system
Linux version 2.2.16 using aggressive optimizations (compiler flags: ‘-Wall -pedantic

-ansi -06 -fomit-frame-pointer -funroll-loops -malign-double -march

=pentiumpro’).

#include <stdlib.h>

#include <string.h>

/* Swap values (Note: Possible side effect) */

#define swap(a,b,t) do { t tmp=(a); (a)=(b); (b)= tmp; } while(0)
/* Allocate and clear an array with n members of type t */

#define alloc(n,t) (t *)calloc((n),sizeof(t))

/* Clear an array */

#define array clear(ptr,n,t) memset((ptr),0,(n)*sizeof(t))

/* Convert a double to an int (Note: Compilers often generate

unacceptable assembly for this operation. For high performance

applications, this should be replaced with inline assembly) */

#define dtoi(d) ((int)(d))

/* p(n) points to the nth particle in the p array

p(n) [0,1] is the nth particle x,y coordinate

p(n) [2,3] is the nth particle x,y velocity

All are normalized to the mesh spacing and time step */

#define p(n) (p+(n)*span)

#define in p(n) (in p+(n)*span)

#define out p(n) (out p+(n)*span)
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/* copy particle is hard-wired for the span = 4 (2d2v) case */

#define copy particle( d, s, span ) do { \
d[0] = s[0]; d[1] = s[1]; d[2] = s[2]; d[3] = s[3]; \
} while (0)

/* Common code between the unsorted and sorted advance */

#define COMPUTE CELL AND OFFSET(p) \
w1 = p[0]; w2 = p[1]; \
i = dtoi(wi); j = dtoi(w2); \
w1 -= i; w2 -= j

#define PUSH PARTICLE(out p,in p) \
out p[0] = in p[0]; out p[1] = in p[1]; \
w3 = ex[i] + w1*( ex[i+1] - ex[i] ); \
w4 = ex[j] + w1*( ex[j+1] - ex[j] ); \
out p[2] = in p[2] + e2ax * ( w3 + w2*( w4 − w3 ) ); \
w3 = ey[i] + w1*(ey[i+1] - ey[i] ); \
w4 = ey[j] + w1*(ey[j+1] - ey[j] ); \
out p[3] = in p[3] + e2ay * ( w3 + w2*( w4 − w3 ) ); \
out p[0] += out p[2]; out p[1] += out p[3]

#define ACCUMULATE DENSITY() \
w3 = w1*w2; w2 -= w3; \
density[i] += 1 - w1 - w2; density [i+1] += w1 - w3; \
density[j] += w2; density[j+1] += w3

#define APPLY PERIODIC BCS(p) \
while( p[0]<0 ) p[0]+=xmax; while( p[0]>=xmax ) p[0]-= xmax; \
while( p[1]<0 ) p[1]+=ymax; while( p[1]>=ymax ) p[1]-= ymax

void advance(double *in p, double *density,

const double *ex, const double *ey,

int N, int span, int Ncx, int Ncy,

double e2ax, double e2ay) {
int i, j, Ngx = Ncx+1;

double *p, *stop, w1, w2, w3, w4, xmax = Ncx, ymax = Ncy;

array clear( density, (Ncx+1)*(Ncy+1), double);

for( p = in p(0), stop = in p(N); p < stop; p += span) {
COMPUTE CELL AND OFFSET(p);

i += j*Ngx; j = i+Ngx; /* i,j are offsets for ex and ey */

PUSH PARTICLE(p,p); /* Push in place */

APPLY PERIODIC BCS(p);

COMPUTE CELL AND OFFSET(p);

i += j*Ngx; j = i+Ngx; /* i, j are offsets for density */

ACCUMULATE DENSITY();
}

}
void advance sort(double *out p, const double *in p,

double *density, int *ngp, int *pa,

const double *ex, const double *ey,
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int N, int span, int Ncx, int Ncy,

double e2ax, double e2ay) {
int i, j, k;

const double *in, *stop;

double *out, w1, w2, w3, w4, xmax = Ncx, ymax = Ncy;

array clear(density, (Ncx+1)*(Ncy+1), double );

array clear(ngp, Ncx*Ncy, int );

/* Convert the input count contained in ‘pa’ to an allocation */

for( i = k = 0; i < Ncx*Ncy; i++) { j=pa[i]; pa[i]=k; k+=j; }
for( in = in p(0), stop = in p(N); in < stop; in +=span) {
COMPUTE CELL AND OFFSET(in);

i += j*Ncx; /* Compute where to */

out = out p( pa[i]++ ); /* store the particle */

i += j; j = i+Ncx+1; /* i,j are offsets for ex and ey */

PUSH PARTICLE(out,in); /* Push and sort to out */

APPLY PERIODIC BCS(out);

COMPUTE CELL AND OFFSET(out);

i += j*Ncx; ngp[i]++; /* Count the output particle */

i += j; j = i+Ncx+1; /* i,j are offsets for density */

ACCUMULATE DENSITY();

}
}

void sort in place(double *p, int N, int span, int Ncx, int Ncy) {
int i, j, k, Nc = Ncx*Ncy, *pa, *pa save;

double *in, *out, *stop, *tmp, p local[4];

pa = alloc( Nc+1, int ); /*alloc clears */

pa save = alloc( Nc+1, int); /* the arrays too */

/* Count the number of particles in each cell */

for( in = p(0), stop = p(N); in < stop; in += span)

pa[ dtoi(in[0]) + Ncx*dtoi(in[1]) ]++;

/* Convert the cell count to an allocation in pa

and save a copy of the allocation in pa save */

for( i=k=0; i<=Nc; i++) { j=pa[i]; pa save[i]=pa[i]=k; k+=j; }
i = 0;

while( i < Nc ) {
if( pa[i] >= pa save[i+1] ) {

i++; /* The current cell is done. Go to the next cell */

} else {
/* The current cell still contains unsorted particles. Get

the next unsorted particle in the current cell for the

next sorting cycle */

in = stop = p( pa[i] );

tmp = p local;
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do {
/* Figure out where to store the input particle.

Update the current allocation accordingly */

out = p( pa[ dtoi(in[0]) + Ncx*dtoi(in[1])]++ );

/* The "ifs" are minor optimizations.

They avoid needless memory loads and stores */

if( out != stop ) {
copy particle( tmp, out, span );

copy particle( out, in, span );

swap( tmp, in, double * );

} else if( out != in ) {
copy particle( out, in, span );

}
/* Loop until we complete the cycle */

} while( out != stop );

}
}
free( pa save ); free( pa );

}
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